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OPTIMAL TRANSFER BETWEEN COPLANAR ELLIPTICAL ORBITS

USING TANGENTIAL PULSES APPLIED AT APSIDAL POINTS

A. S. Shmyrov

The problem of optimal pulse transfer between orbits is a /63

vital problem of celestial mechanics. Numerical methods and num-

erous analytic studies have been made toward its solution (1].

There are, moreover, publications on numerical analysis of opti-

mal trajectoriesof acquisition of actual celestial bodies. This

study provides a solution of the particular case of the general

problem using sufficient conditions of optimacy.

1. Statement of the Problem

Let us consider the set of coplanar elliptical orbits, whose

apsidal lines coincide. Let us select a direction on the apsidal

line and call the apsidal poin't of the orbit positive, if its di-

rectional radius-vector is positive; the other apsidal point will,

accordingly, be negative. The distances from the center of gravity

to the apsidal points will be denoted by r+ and r_. The elements /64

of the orbit become fully defined with the assignment of two posi-

tive numbers r+ and r . In particular, by these values we can

calculate the value of velocities v+ and v_ of the apsidal points:

v _2 (1.1))1/2/2-1/2
v =(2 )'12t1/2r ' 12 ( r + + r  )- i2,

where v is the constant of gravity.

Now let it be required to move between two orbits from the

set in question using tangenital pulses applied at apsidal points

so that the characteristic velocity of transfer is minimal. Formula
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(1.1) permits us to establish how the values r+ and r_ vary as a

function of increases in velocity. Given that at a positive ap-

sidal point velocity has received an infinitely small increase

dv > 0. The quantity r+ herein will not change, but the increase

dr_ of quantity r_ can be calculated from the first formula of

dr_ = ± (/2)-'2r 1I/2r"2 (r+ + r_)3 12 dv, (1 . 2)

where the sign 'plus' is selected if the increase is given in the

direction of velocity, and the sign 'minus' if otherwise.

If, however, the increase dv was received by the quantity

v_, the value r_ will not change, but the increase dr+ is defined

from the second formula of (1.1):

dr= + (d2)-2r.1r1 (r+ + )P/2 dv. (1.3)

The sign on the right side of (1.3) is selected just as in (1.2).

Therefore, the derivatives of r+, r of the quantities r+ and

r in terms of characteristic velocity v depend on the point of

application of the pulse and its direction with respect to velo-

city. They generally appear as

r+ = (R/2)-'/2r12r-"/2 (r+ + r_)3 12u1 l.2 ,
r = (p/2)- 2 r 2r' (r+ra (1-au),(1.4)

where u1 
= +, u2 =0; 1.

The quantities ul, u2 are, controls and define the applied

pulse as follows: if ul = 1, the pulse is applied in the direction

of velocity; if u2 = 0, the pulse is applied at the positive ap-

sidal point; if u2 = 1, the pulse is applied at the negative ap-
2



sidal point; if ul =-1, the pulse is aimed opposite velocity.

Now this problem can be formulated as a problem on the

optimal speed of response: to seiect such controls ul and u2i ' •rf f
so the initial point (r+, r ) transfer to a fin&l point (r , r )

with the least increase in the argument.

2. Description of Control Synthesis /65

Let us introduce instead of the variables r+, r_ new vari-

ables xl, x 2 , t according to the formulas

x, l-r, x -- r_-, t (i/2)-1 v.

Equations (1.4) in the new variables will acquire the appearance

Xi=xrX (x,+x 2)3 2U 1t2,

z=xX' (x1 +x 2)32 U1 (1 - 2), (2.1)

where (*) denotes the differentiation with respect to t.

Let us limit the set of possible values of xl, x2 by the square

of A: a . x I  a 2 , a < x 2 < a 2 , where al << 1, a 2 >> i.

The meaning of this limitation is that the initial, final

and transitional orbits lie within a circle formed by neighbor-
-1 -1

hoods with raditYal , a2

Let us now examine the problem of optimal incidence from any

point of the square of A into point (1, k) for determinacy posit-

ing that k> 1. This problem is considered solved if controls ul ,

u2 are found as functions of the variables xl and x2, i.e., if

synthesis of the optimal control is made.
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Let us first give a description of the synthesis, and the

proof of its optimacy will be made later.

In a figure is depicted the subdivision of square A into

areas A1 , A2 , A 3, A4 , A5 , A6 , A7 , A8 , A9 by curves MMI ,

M1M2, MM3 , M2M3 , M3M4 , M4 M5 , M5 M8 , M4 M6 , M6 M7 , M7M8, M7M9 , MM8'
M8M9 , M9 M1 1 , M10M 1 1 ' M1 0M 1 2 , M 1M1 2 ' MMI0 ' M 1 2M1 3 , M1 3M1 4 .
Each of these curves is defined by an equation and inequality.

which have a form indicated below.

For curve M1M2

(x 2-l) (X X2)-112-( 2---a)(X2+al)- 12 + (xl+ k)112= (k+, ( 2.2)

For curve MM1

x,=l, k<x2x21, _ (2.3)

where x21 is the solution of equation (2.2) with respect to x2 where

xl = i.

For curve M2M 3

xl=a, ki<x2 122, (2.4)

where x22 is the solution with respect to x 2 of equation (2.2)

where xl = al.

For curve MM3

x,=k, ax,<. (2.5)
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For curve M4 M6

(xI +( ) (k+x)- 12-X2 (x +a)-' 2 k (k+a)1 (2.6)

ai<_xix-

For curve M5M 66

(x 1-x 2) (xI + 2)-1+(2 x+ +a)12-1(x, -a) (xI +a.)-1/2=(2al)12 (2.7)

where x16 is the solution with respect to xl of the system of

equations (2.6) and (2.7) in square A.

.2 MM 14

r3

X 1 -

,

For curve M6M7

2x +x ) 112 +(k-x i (k+x,)- 2 -(x 1-a) (x +a,)- (28)

(2a,)112+(k-al) (k+al)-12+k (k+1)-2, (2.8)
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For curve M7M 8

(x- x 2) (xi +x 2)
- 1 +2---)2 + 1-112 (k-x 1) (k+x 1)- 2 =
=(k-1)(k+1) - 1/, x,7<xi <1, (2.9)

where x17 is the solution with respect to xl of system of equations

(2.8) and (2.9).

For curve M7M 9  /67

(x X 2)1/2 (l--X2)(1 +X 2)-
1

/
2

-(X 1 -a 1 ) ( 1 + a- 1
2

L(2at212+(k--a) (k+al)-"2+(1 -k) (1 +k)-1 2, x 17 < 1. ( 2 .10)

For curve M M11

(£2xz-7) ( 2 1x,)-1/2 X21 1 2-(x -a (x+ aj)-1/2
(2al)2+-(,k-al)(k+al).l--(k-1)(k+l)-2, x, <x, (2.11)k

where x29 is the solution with respect to x2 of equation (2.11)

where x, = 1.

For curve M8M9

x,1=, x29<x 2 X28-x (2.12)

For curve MM8

xI==1, x 2 8 <k (2.13)

where x28 is the solution of equation (2.9) where xl = 1 with

respect to x2 '

For curve M10 M12

6 (xa"x 2)(xi+x 2)-1/2-( kx 1 ) -l Z (XZ 1(1_2-_7



T (k-)(k-f1- k-  x 21X . (2.14)

For curve M12M13

(x1-X2) (X1 +X2)-112+ (X2-a,) (x + a,)-1/2+(k-x) (k:+x)-
2k (k+1)-/2-(k+a,)112 , X112<x, <X 113 ,

(2.15)

where xll 2 is the solution of equation (2.15) with respect to xl
where x2 = x21, and x11 3 is the solution of equatiod (2.11) with

respect to xl where x2 
= k.

For curve M13M14

(xl-x 2 )(x+ x 2)-" 2 -(x 2 - a,) (x2+a,)-1/2.+ (x, (X, +a)-" -j
. (2a,)1/2 -2a, (k+ a,)-112, (xax +a,

For curve MM10

x,=,,(2.17)x2 =k, <x<X 0,

where Xll 0 is the solution of equation (2.14) with respect to

x I (x 2 = k).

For curve M M12

x2=x21, 1<xjxj. (2.18)

For curve Mo M11

. . . .. . ." ( 2 . 1 9 )
' x2=k, xo<x, <xh. t
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For curve M11M13

x 3j kXX213' (2.20)

where x21 3 is the solution of equation (2.15) with respect to x2
where xl = x113'

Curves B1M1 4 , M1 4 B3 , B3B2 , M2B2, M3M 4, M4 M5 M5 B1 belong to

sides of square A.

The thus defined curves subdivide square A into areas:

curve MMIM2M3M ounds area AI, curve MM3M4M6M7M M bounds area A2, /68

curve M4 M5 M6 M4 bounds area A3 , curve M7M9M M7 bounds area A4,
curve MM8 M 9MiM10M bounds area A5, curve MoMM 13M 12M10 bounds

area A , curve B B3M I3MIM9M7M M5B1 bounds area A7 , curve MM1OM12

MIM bounds area A9 .

After defining the subdivision of square A, we can formulate

the theorem of synthesis of optimal control.

Theorem

Any point x of square A will transfer to point (1, k) with

the least increase of the argument if controls ul, u2 are selected

as follows:

if XE AIVA 6VA 7VB 2MVM 14BIVMIM, then ua=-1, u2=0,

if xE A 2VM5sMVM9M, then u,=+l, ua=0,
if x A 3VA5VA 8VA 9 VBMVM 4B3B2, then u,=-l, U2=+1,

if xE A4VM3 M, then a,=+-l, U2=+1.

Note 1. The theorem is valid under the ,condition that

k > 1, al is sufficiently small quantity, and a2 is sufficiently

8



large;.

Note 2. The problem stated in section 1 is tantamount to

the problem of this section. In reality, if the final point is
k k k kdefined by the integers xl , kx 2(x < kx2), then after replacing the

k-1 k -1 k 1/2variables: yl = ( 2 = (x1) 2, t' = (xI  t, we will be
k k

under conditions of problem of section 2. If, however xl > x 2
it is sufficient to change the direction on the apsidal line so

that variables xl, x2 switch roles.

Note. 3. With sufficiently large k, area A4 degenerates

into a point lying on straight line xI = 1.

3. Proof of the Theorem of Synthesis

In the theory of optimal control, verification of possible

solutions is done with the aid of sufficient conditions of opti-

macy. The set of such conditions for the problem of speed of

response is united in the concept of regular synthesis .[2]. But

regular synthesis is constructed in an open set, and in our case

the set in which the synthesis is constructed (square A) is closed.

This fact.is essential since a portion of the optimal trajectory

can belong to the boundary of A. Thus, let us prove the theorem

using the method proposed in study [3].

Let us consider the functions P1 (xl, x2 ) and P2 (x1 , x2 ).
1 i

After designating with Pi and P2 the values of the functions P1

and P2 in area Ai, let us define them as follows:

P1P X2 (x +x2)-31 2 -1/2 .fS (x1 y)_-312dy,9
k (3.1)



P I= (x x 2)-a+ 3 /2 (x -y) (X+y)-5/2 dy,

(3.2) /69

k

P2=xl (xI-x 2)-312 -- 1/2 S (x 2+y)-32dy;

- , . .. (3.3)
P = ;2 I X - , .3/2

14P= =x (x +x 2)-
312 +3/2 S (x 2 -y) (x 2 + y)-2 dy;

(3.4)

P x2 =x, (x,+x 2)-3/2-1/ 2 (x+y)-3/2 dy;
(3.5)

-r2 ( -12 + 3/2 S(x I--y) (XI +y) 512 dy,
P26= -X ( I+x2) -3/2

(3.6)

a- x ,+ x, , d.

- -- -3/2

P-= -x (X .+X 2)-3 /2+3/2 S (x2-y) (X2'+ y)5/2 dy; (3.8)

PP= -; (x, +x 2)-312"

P2 =-X 1 (x,+x 2)-323/2 (X-y) ( 2+ y)-5 ' dy.
". (3.9)

By the clear form of functions P1 and P2 defined by formulas

(3.1)-(3.9), it is easy to verify that the system whose set of

velocities is a line Px 1 + P2x2 = 1 is also (following the termi-
nology of study [3]) auxiliary. The selection of optimal controls

is done namely as the theory of synthesis asserts.

The theorem is proven.
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